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MOBILITY OF POSITIVE IONS IN THEIR OWN GAS:
DETERMINATION OF AVERAGE MOMENTUM-
TRANSFER CROSS SECTION
by John W. Sheldon

Lewis Research Center

SUMMARY

The energy-dependent charge exchange cross section is integrated over the
appropriate energy distribution to yield the average momentum cross section for
an ion in its own gas. This momentum cross section Q is presented in terms
of charge exchange constants A and B, numerical constants & = 0.577... and
K = 2.492..., the atomic polarizability «, and the thermal energy of the gas
kT. The expression

Q = 2% - /LAB(% - &+ 1n kT) + 132[4(% - 8) 1n kT + 2(1n kT)2 + J{]

x e
> 2
BZKT(% - 1in kT)

1s obtained herein and is shown to have an error A@/Q of less than
1.15 of[ (AB)Z + 5a).

The average momentum cross section obtained from this equation can be
used to compare energy-dependent charge exchange cross section data with mobil-
ity data; this is illustrated by an example for several inert gas ions in
their own gas. The average momentum cross section has also been used to com-
pute the mobility of alkali-metal ions in their own vapor. The calculations
reveal errors in earlier numerical approaches.

INTRODUCTION

When the mobilities of positive ions in their own gases are calculated,
three problems must be solved:

(1) Ion motion must be analyzed by using kinetic theory.



(2) The energy-dependent momentum-transfer cross section for the ion in
its own gas must be computed.

(3) The energy-dependent momentum-transfer cross section obtained in prob-
lem (2) must be integrated over an appropriate energy distribution dictated by
problem (1).

The solution of problem (1) is presented in classical texts on kinetic
theory (refs. 1 and 2) for the case of low applied electric fields, a condition
to which the present analysis is restricted.

Many authors (e.g., refs. 3 to 6) agree on the general solution to prob-
lem (2) for low collision energies (below 100 ev). This 100-electron-volt
energy limitation is compatible with the low-field restriction on problem (1).

This report is primarily concerned with the solution to problem (3).
While previous numerical (ref. 7) or empirical (ref. 8) approaches are adeguate
for specific instances, they do not permit observance of the dependence of ion
mobility on the various parameters significant to the mobility problem (atomic
polarizability, gas temperature, and charge exchange constants). Furthermore,
they entail considerable time and labor with each application. The required
integration is carried out herein through the use of appropriate approxima-
tions. The resulting dependence of the lon mobility on the various parameters
appearing in the problem thus becomes clear.

MOBILITY AND MOMENTUM-TRANSFER CROSS SECTION

The theory of ion mobility in the low-field limit (ref. 9) is concerned
with the motion of thermalized ions across a reégion of uniform electric field
E. The motion is inhibited by a gas of considerably greater particle density
N than the ion density. (Ion-ion interactions can be neglected.) The low-
field 1limit implies that the velocity of the ilons acquired by acceleration in
the field between collisions is less than their thermal velocity. The average
velocity of the ions in the direction of the applied electric field is defined
as the drift velocity vy.

Measurements of ion drift velocity are usually reported in terms of ion
mobility u, defined by

v
D
HET

plotted against the ratio E/P, where P 1s gas pressure for constant gas
temperature T. (Symbols are defined in appendix A.) The physical signifi-
gance of E/P becomes apparent by use of the gas law

P = NkT

and the definition of mean free path A
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where o 1s the ion-atom collision cross section averaged over an appropriate
energy distribution. Therefore

Eg _ eEA
oNkT KT

olal

E
2

where e 1is the electron charge, and kT 1is the average thermal energy of the
ion. The quantity eEA 1s the average energy gained by the ion from the elec-~
tric field between collisions. Hence, E/P is proportional to the ratio of
directed energy derived from the applied electric field to the random energy of
thermal motion.

Townsend (ref. 10) has shown that the relation between ion mobility p in
an electric field and ion motion due to diffusion across a concentration gra-
dient is given by

= o= (1)

where D is the diffusion coefficient.

Chapman (refs. 11 and 12) and Enskog (ref. 13) obtained an expression for
this diffusion coefficient. (Their work is presented in more recent texts by
Chapman and Cowling (ref. 1) and Hirschfelder et al. (ref. 2).) The Chapman-
Enskog procedure is to obtain an approximate solution to the Boltzmann equation
for noneguilibrium conditions by a perturbation technique. The Chapman-Enskog
results inserted into equation (1) with the restriction that the ions and gas
atoms are the same element yield

_ 3\/5 e
b= R (2)

where m is the ion or atom mass and

s__1 [ » ~¢/KT
Q = Q(ele de 3
2(kT)5 'of ©e ®)

Here ¢ 1is the relative kinetic energy of an ion with respect to a gas atom
and Q(e) is the energy-dependent momentum-transfer cross section for an ion-

atom collision.

The relation between momentum-transfer cross section and resonant charge
exchange cross section oy(e) is (refs. 14 and 15)

Q(e) = 20,(e) (4)



Resonance charge ex-
change is the process by
which an ion passing an atom
of the same element gains one
of its outer atomic electrons
(fig. 1). This interaction
appears to be an elastic
scattering at approximately
180° in the center-of-mass
frame of reference and there-
fore is a major consideration
in charge transport calcula-
tions.

The energy dependence of
o.(€) has been discussed by
many authors (e.g., refs. 3
to 6), any of whose results
can be approximated by
(ref. 7)

2
qx(e) = (A - B 1ln €)

2 ()2 1
. [l e (ZZE> e(A-B lrn e):l‘:l
(5)

where A and B are con-
stants dependent on atomic
structure and o 1is the
atomic polarizability. For
Figure 1. - lon-neutral elastic scattering event with charge exchange. most gases and vapors, A is

between 5 and 50 i and B is between 0.1 and 5 A per 1n(ev) and the ratio

A/B is usually greater than 10.0; o ranges from 0.1 to 75 AS. Equation (5)
is restricted to energies below some maximum € of the order of 100 electron
volts (ref. 3). Since ion-atom energies this high or higher are unlikely under
thermal conditions and since oy (€) is very small above 100 electron volts,

the upper limit of integration in equation (3) may be replaced by €.

AVFRAGING THE MOMENTUM-TRANSFER CROSS SECTION

It can be seen from the previous section that the mobility problem can be
reduced to one of determining the average momentum cross section by integration
of

m
G=— [ Baeyeme/iT ac (6)
2(xT)° O



where Q(e) is given by the combination of equations (4) and (5):

Q(e) = 2(A - B 1n e)2[1 + e%(%‘)z -(—A~ 1 4] (7)
I3 -

B 1ln €)
Equation (7) may be

inserted into equation (6)
and the result written

3 2
G=(% )" ea
Q_(ﬁ) [Il+ (2) B2 IZ]

CH
5
2 (8)
g where
€
m
T = / e~ E/kTEZ
kT Em a a+ AT 1 5
| ‘-
lon-atom relative energy, € x (A-B 1n €)2 de (9)
Figure 2. - Integrand of I;. I -Km gyleMde.
and
€m
-¢/kT
2 A 1 ) 2
ey

Determination of Il

The behavior of the integrand of Ij, gj(e), above e, has no physical
significance (fig. 2); but, because it is always quite small, the upper 1limit
of integration of equation (9) can be extended to infinity without introducing
serious error.

With the definitions a = e&/B and x = ¢/kT, equation (9) becomes

2 o
1, = B2(x1)3 (m -1;—T) / x%e ¥ dx + 2 1n 1—;2/ x% (1n x)e~¥ ax
0 0

+ / x%(1n x)2e¥ ax (11)
0]
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The three definite integrals were determined with the aid of Bierens de Haan's
Integral Tables (ref. 16). The first is

f x%e™¥ dx = 2 (12)
()
The second is
f x%(1n x)e ¥ ax=(30yB(3) (13)

0]

where TI'(q) is the gamma function and WB(q) ig Bateman's psi function
(ref. 17). For the specific case of q = 3, WB(S) = g - &, where & 1is
Euler's constant, 0.5772...(see appendix B). The third integral is

o0

2
x2(1n x)%eX ax = d_% (14)
; ‘
0 T do=s
where

2

d—Iﬁzll = X = 2.492...
dg g=3

(see appendix B).

Combining equations (11) to (14) yields

2
I, = B2(xT)3 2(111 _kaE) + 4(ln %)(g - e:) + X (15)

Determination of I2

Equation (10) can be written as

€m
c-€/kT _e de

2
€
0 (ln g)

IZ=



The integrand of Ip, gp(e), is shown in figure 3. Note the sharp dis-

Integrand of I, gyle)

'y I\

—_ -

lon-atom relative energy, €

Figure 3. - Integrand of . L -_65"‘ golelde.

continuity at € = a. The discontinuity is sharpened by the occurrence of a
minimun at € =~ a - 2kT. Typical values of a are above 10,000 electron
volts, while kT is between 0.0l and 0.25 electron volt (115° K< T< 3000° K).
The discontinuity has no physical significance, since the cross-section ex-
pression being integrated does not represent the physical phenomena above
€, = 100 electron volts (ref. 3).

A convenient procedure for obtaining an approximate value for I, 1is to
apply the quadrature formula (ref. 18)

00

n
wPeFe(x) ax = Y HiE(xg) (16)
i=1
0

where the nodes are the roots of the Chebyshev-Laguerre polynomial LSB)(X),
that 1is,

L(B)(x) = (-1)%x Be¥ a xPtog-x
n d_'XZn

where

1) =0



is required.
The coefficient di is
nit(p+n+ 1)

o = —
dLr(P)(x)

If the continuous function

f(x) = 5
(—']Ag“ - 1n x.kT)

is used for 0 <x < x, and f(x) goes smoothly and quickly to zero for
Xy <X S oo then

oo co

= (kT)2 f e~*f(x)dx -/ e *f(x)ax
0

*m

where x = ¢/kT. Since x g > 300,

I, ~ (kT)E/ e *f(x)dax
0

When equation (16) is applied for B = O and the inaccuracy of a single-node
approximation (n = 1) is accepted,

(k1)

2
A
(—E - 1n k.T)

Since the term in equation (8) that 1ncludes I, 1is generally less than
25 percent of @ for temperatures above 50° K, equation (17) should be a suf-
ficiently good approximation for most applications. The average momentum
cross section can now be expressed

Q =~ 2A% - tLAB(% - &+ 1n kT) + 32[4(—2‘73 - e)ln kT + 2(1n kT)2 + 3{]

(17)

Ip ~

2
+ (ﬂ % (18)

2 A 5
BZKT<§ - 1n kT)




DISCUSSION
Error in Determination of Il

The extension of the upper limit of integration of I; from

infinity introduces an error Alj] 1into the determination of Ij.
tude of the fractional error AIl/Il may be expressed by

ATy 1

T. ° o
1 / gl(e)de
0

-1
(ve)
f gl(e)de
€m
Noting that
o] [oe]
e \? - =
gl(e)de < B Q_n _al_n) e%e kT de

€m €m

and using equation (15) produce

/ gl(e)de 2(1n %T)Z + 4<Ln 1;—T)(S/Z -8)+ X
0 >

00 ! € . )
m 2 2
g (e)de -— € e
1 kT m m
[ € (]_n —-—a> (_kT + l) + 1

m

Further approximations that strengthen the inequality yield

joe)
/ gl(e)de ‘m
0] 2ekT
[ela] c 2
g, (e)de o1 o+
€ kT

m

Now the maximum error in Il is limited by

2 _n
ﬁ< 31.+1 + 1le ¥T
I kT

€, bto
The magni-



When kT =~ 0.3 electron volt and €m

= 100 electron volts, AI;/I; < 107140,

0

Error in Determination of 12

The largest error in this calculation is the result of using the single-

node quadrature formula.

I

)2 0. 5000
A
B

and a three-node guadrature gives

5 = (kT

0. 2957

0. 6390

A two-node quadrature gives (ref. 18)

- 1n(0.5858 kTZI 2 [—% - In(3.414 kTZ,

0.0854

2
I, = (kT) - +

B B

+

[é _ 1n(0. 4158 szlz [é - 1n(2.294 kT)]Z [% - 1n(6.290 kTE]Z

(20)

As the number of nodes used in the calculation is increased, the exact value

can be approached with a greater degree of accuracy.

two-, and three-node approximations (egs.
following table:

kT, _Jﬁ, Approximation of Ip
ev B
lin{ev) One node Two node | Three node
0.001 | 20 | 1380102 | 1.422x107° | 1. 225x10~°
.100| 20 | 2.011x10™° | 2.083x10™° | 2. 09110
.001| 5 |7.031x00°° | 7.538x007° | 7.591x10"?
100 | 5 | 1.877x107% | 2.167x107* | 2. 185x107%
can be no greater than
N 1
2
(I2)pax = i 1
1n %
a
€n

n=0

10

A comparison of one-,
(17), (19), and (20)) is given in the

An estimate of the maximum
error AIZ introduced by the
single-node approximation can be
obtained from the determination of
an upper and a lower limiting value

of IZ’ (IZ)max and (IZ)min'

Since [1/1n (e/a)]2 increases
monatonically from zero at e = 0

to [l/ln (em/a)]2 at ep, I

_ el
kT
€ e €.
ee'e/kT de + i 5 o
1n N1
a



and no less than

N €
ntl
S €
(I2)min = L ce T qc
1n —=2
a

n=0 €n

If equal energy intervals of kT are chosen,
2
- 1n EE 1 +
£ 0% 2} -n
(T2 )max = kT [ (n + 1)kT l)kT (n l)<l “en+ 1) ®
1n KT 2
- €
+ (N + 1)e”(IF1) a o
1n (N + L)kT| kT
a

and

N

2 2
KT ) In 22 1n+ 2
I - 2 _En*T 2} -n
(IZ)min - 1n kT 1n nkT (n+1) @' en+ l) ©
a a
n=0

When N = 20 is used along with kT > 0.0l electron volt,

2
_kT
(Is) = 1.18
2/max 1n EE
a
and
kT
(Iz)min = 0.772 kT
In —
a,
Hence
Al_2
T < 0.23
2

11



From equations (2), (8), and (18) the following error in average momentum
cross section AQ/Q and mobility Ap/p is obtained:

z_:_'é, _ 1.15 a
Q

L
(AB)2 + 5q

ol
)

Comparison with Previous Calculations

The mobility expression, equation (2), and the approximate average momen-
tum cross section, equation (18), were used to calculate the mobility of
alkali-metal ions in their own vapor at 300 K. The standard vapor density,

2.69x1019 atoms per cubic centimeter, was used. The results of these calcula-
lations are compared with values obtained by numerical integration (ref. 7) in
the following table:

Element Atomic Constant, | Constant, Ton mobility,
polariza- A, . B, [T
bility, 2 Afin(ev) sq em/(v) (sec)
XLy : " T T
23 Egs. (2) and (18){ Ref. 7
Cesium 61 23. 97 1.50 0.0784+0. 0034 0.0736
22.52 1.15 . 0914+0. 0066 . 0880
31.62 3.12 . 0401+0. 0003 . 0361
27.40 1.84 . 0603+0. 0015 . 0552
— - - —_— N S
Potassium 36 23.02 1.53 0.157+0. 005 0.144
31.32 3.02 . 076520. 0034 . 0683
Rubidium 40 13. 22 0. 601 0. 243+0. 042 0.324
Sodiwm | 20 | 11.40 | 0.496 | 0.65240.114 | 0.848

The maximum error A& in the calculated mobility is also presented. When the
two values of L 1in the previous table differ by more than AL, the discrep-
ancy must be attributed to inaccuracy of

FElement | Constant, | Constant, | Atomic previously reported numerical results.
A, . B, polariza~
A A/1n(ev) bility,
E’ Comparison of Cross Section and
(a) . .
e Mobility Experiments
Helium | P5.27 bo. 320 0. 206
Neon es. 76 ¢, 597 398 _ Qalculation of temperature-dependent
mobility from charge exchange constants A
Argon d7.15 d, 441 1.63 and B provides a basis for comparing
L — charge exchange cross section measurements
®Ref. 19. with mobility measurements. As an example,
c?Z? gg: this comparison is now presented for three
dper. 22. inert gas ions in their own vapor. The

12



cross section data (refs. 21 and 22) have been fitted to a curve of the form of
equation (5); the resulting values of A and B are presented in the previous
table along with values of o obtained from reference Zzz.

The constants A and B were inserted in equation (2) and (18) and the
resulting temperature-dependent mobilities of helium, neon, and argon ions in
their own gas are presented in figure 4. The mobility measurements of refer-

— 5.5 S
1| \:
17
5.0 \ \
T o Data from ref. 8
N Calculated from egs.
16 \\ (2} and (15) \
\ ———— + Computational error 4,5 N d
N
15 \ \\\ N
\ ™
\ ™~
-~ 14 4,0 \ ~ -
8 ™~
] \ N \ ~
2 K\ \ N ™ ~
E B \ 4 N ~1
S \ 3.5 ~ ™~
o ~ \
n — ~ Ny \\
L ERENRNRN - IRSERE
E \ ~ | 3.0 ~
= ] (b) Neon.
2 q N : 2.4
o]
NN N b
10 \\ ~ e 2 0 T o
[ ~N (F—‘ * - ~
~ . \ 7\g e ~ — _ -
4 \ \\\ ~—~ L
9 ~ X ]_.6 e B
~.1 =~ ~—l 1|
~ ~ L — ]
8 T~ 12 =L _
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Temperature, T, °K
(a) Helium. {c) Argon.

Figure 4. - Mabilities of ions in their own gases.

ence 8 are also presented in this figure for comparison. Measured mobilities

outside the band of maximum computational error must be interpreted as a dis-

agreement between the mobility data and the experimental charge exchange cross
section data.

CONCLUDING REMARKS
The momentum cross section § can be presented in terms of charge ex-

change constants A and B, numerical constants & = 0.577... and

K = 2.492..., the atomic polarizability o, and the thermal energy of the gas
kT. The expression

13



Q = 2A% - éAB(-g -&+ lnkT>+ 32[4@ -8) 1n kT + 2(1ln kT)2+}(]

2

(ﬁ)z e
*\2 2
BZKT(% - 1n kT)

has been obtained herein and shown to have an error AQ/Q' of less than
1.15 o/[ (AB)2 + 5a]. This equation is subject to the limitations A/B > 10

and 0.0l ev < kT < 0.3 ev.

The use of this equation and cross section data to obtain the mobility of
alkali-metal ions in their own vapor revealed errors in earlier numerical cal-

culations.

The average momentum cross section given by equation (15) can conveniently
be used to compare energy-dependent charge exchange cross section data with
mobility data; this was illustrated by an example for several inert gas ions

in their own gas.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, May 11, 1964
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APPENDIX A

SYMBOLS

constants in expression for theoretical energy-dependent charge exchange

cross section
coefficient in quadrature formula
/B
diffusion coefficient
electriq field
Euler's constant, 0.5772...
el;ctron charge

functional dependence in quadrature formula

€

integrand of Iy, e kTEZ(A - Bln e)2

integrand of I, e 7 \32
(A - 1ln %)

m e
value of integral / e kT»ez(A - B 1ln e)z de
(0]

m  _ &
value of integral e kT ¢ de

2
A
0 (E - 1ln e)

Chebyshev-Lagnerre polynomial

Boltzmann's constant

ion or atom mass
gas density

summation index in obtaining limiting values of

15



gas pressure

Q energy-dependent momentum-transfer cross section
Q average mémentumrtransfer cross section
q independent variable
T gas temperature
t dummy variable of integration
5 ion drift velocity
X ratio of ion-atom relative energy to kT
a atomic polarizability
B parameter in quadrature formula
gamma function (see appendix B)
A computational error in quantity that follows
€ ion-atom relative energy
K numerical constant, 2.492...
A ion mean free path
i ion mobility
B average collision cross section
Oy charge exchange cross secﬁion
s psi function (see appendix B)
WB Bateman's psi function (see appendix B)
Subscripts:
i summation index in quadrature formula
m maximum energy for which theoretical charge exchange cross section
expression is wvalid
N upper limit of summation in obtaining limiting values of I2
n summation index in obtaining limiting values of I2

16



APPENDIX B

GAMMA AND MULITGAMMA FUNCTIONS
The gamma and multigamma functions are particularly useful in determining
definite integrals whose integrands contain exponential and logarithmic func-
tions. The definition of these functions differs slightly among various texts;

the differences and their relation to notation used in this report are the sub-
ject of this appendix. Most authors agree that the gamma function is defined

by
r(q) = / e~t4a-1 g4 (B1)
0

and consequently that its relation to the factorial function is

q! =T(q+ 1) = ar'(q) (B2)
When the various functions used to denote derivatives of the gamma and fac-
torial functions are considered, however, little consistency is observed.

Jahnke and Fmde (ref. 23) define a psi function (g) that is identical with
Jefferys' (ref. 24) digamma function F(q):

¥(a) = F(a) = & (1 @) = o5 5o (o) (B5)
When q = O,
¥(0) = -& = -0.577215... (B4)

where & is Euler's (or Mascheroni's) constant. The series for v(gq) when
the argument is a positive integer n is (ref. 23)

¢<n)=-8+l+%+%+“'+—zli (B5)

The trigamma function is defined (ref. 18) by

2
QM.__ i\l!_(_q._)_ =X _ _];.*.i-p +L (BB)
dg dq _ 6 12 22 77 2
g=n
Bateman (ref. 17), however, defines a psi function WB(Q) by
Brg) = & -1 _49
¥(a) = quLn r(q)] = T(qy aq [(a) (B7)

and then generalizes it to obtain the multigamma function

17



aBlg) _ dn+l [in ~(q]]

dq” dq
Hence
v(a) = I‘(q) dq[q r(q)] = ’(_S dq[ r(q)] + = (B8)
y(a) = vB(a) + % (B9)
For the specific case gq = 3
B(3) =w(3) -F=-€+1l+3+3-F-3 € (B10)

The derivatives of the gamma function can be obtained by rearrangement of
equations (B7) and (B9) and successive differentiations. Then

L@ - r()P() = r@)fva - 3] (1)

and

2 B 2 2

dg

Setting q = 3 in equation (Bl2) determines ¥ in equation (14)

¥ = [ﬁ(_%l] =p(3){[i‘§(ﬁl] -[q,(s)]2+§ﬂ%(i)}= 2.492927...  (BL3)
dg g=3 ¢ dg=3

18
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